Ground and excited state properties of heavy element systems from relativistic (embedded) coupled cluster calculations

HALBERT LoïcA, YUAN XiangA,B, RÉAL FlorentA, VALLET ValérieA, SEVERO PEREIRA GOMES\textsuperscript{AndréA}

\textit{A) Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France; B) Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands}

andre.gomes@univ-lille.fr

Accurate electronic structure calculations have become an indispensable tool to understand the molecular properties of heavy and superheavy elements. Such approaches help make sense of the underlying complex physical processes probed by experiments, or in the case such experiments are unfeasible due to the heavy elements' radiotoxicity. In this presentation I will outline our contributions to developments of coupled cluster approaches based on four-component Hamiltonians for ground1 and excited/ionized states2, as well as response properties3, and discuss their application to investigating species such as actinides4. Furthermore, I will show how these can be combined with more approximate approaches through embedding theories, to enable the investigation of species in complex environments such as in solution5 or at interfaces6.

Figure 1. Left: one-photon absorption spectrum of the I\textsubscript{2} molecule obtained from with non-relativistic (NR) and relativistic (X2C) Hartree-Fock and coupled cluster damped response theory calculations3. Right: Structural model employed in CVS-EOMIP-in-DFT calculations to determine the 2p core electron binding energies of chloride and HCl on amorphous ice6.

\textbf{Keywords:} relativistic coupled cluster, response theory, core spectra, embedding

1 Pototschnig et al., JCTC 2021, 17, 5509 10.1021/acs.jctc.1c00260
2 A Shee et al., JCP 2018, 149, 174113 10.1063/1.5038416 ; L Halbert et al., JCTC 2021, 17, 3583 10.1021/acs.jctc.0c01203 ; L Halbert, ASP Gomes, Mol. Phys. 2023, c2246592 10.1080/00268976.2023.2246592
3 X Yuan et al., JCTC 2024, 20, 677 10.1021/acs.jctc.3c00812 ; X Yuan et al. JCTC 2023, 19, 9248 10.1021/acs.jctc.3c01011
4 Kervazo et al., IC 2019, 58, 24509 10.1021/acs.inorgchem.9b02996
5 Y Bouchafra et al., PRL 2018, 121, 266001 10.1103/PhysRevLett.121.266001
6 RA Opoku, C Toubin, ASP Gomes, PCCP 2022, 24, 14390 10.1039/D1CP05836C