Calculating redox potential of flavoproteins with the AMOBEA force field

AECK Mélody; CLAVAGUERA Carine; DE LA LANDE Aurélien; CAILLIEZ Fabien

A) Institut de Chimie Physique, CNRS/Université Paris-Saclay UMR 8000, 15 av. Jean Perrin – 91405 Orsay, France

fabien.cailliez@universite-paris-saclay.fr

Electron transfers are at the heart of many key biological processes such as photosynthesis and respiration. Such transfers rely on protein cofactors, either inorganic hemes or organic prosthetic groups like flavins, the redox properties of which are tailored to their proteic environment. Understanding redox properties of those cofactors is thus necessary to fully comprehend the chemical and biological processes involving electron transfers.

Redox potential of flavoproteins can be predicted with molecular simulations combining quantum chemistry calculations and molecular dynamics simulations using force fields to extensively sample the potential energy surface\(^1\). In the case of systems involving proteins, an accurate representation of electrostatic interactions is crucial hence the use of polarizable force fields, going beyond the monopolar approximation.

In this context, we aim at validating the use of the polarizable force field AMOBEA\(^2\) for the prediction of the redox potential of flavoproteins. As there are no-preexisting set of parameters to describe flavins in the AMOBEA force field, a calibration step is carried out to generate such parameters for the different types of flavins (lumiflavin, flavin mononucleotide FMN, flavin adenine dinucleotide FAD) based on a process already used to calibrate a heme cofactor\(^3\). This method consists in performing QM calculations and calculations using the AMOBEA force field with Tinker\(^4\) on different redox states of flavins to generate the parameters which then undergo a validation step. We will present here the first results obtained for the calibration procedure of the AMOBEA parameters for flavins and their validation.

![Figure 1. Comparison of MP2 energies and AMOEBA energies for the lumiflavin.](image)

Keywords: polarizable forcefield, redox potential, molecular simulation, flavins, proteins
