Elucidating Novel Pathways for Prebiotic Glycine Synthesis: Merging Enhanced Sampling and Neural Network Atomic Potentials.

HUET Léon; DEVERGNE Timothée; MAGRINO Théo; PIETRUCCI Fabio; VUILLEUMIER Rodolphe; SAITTA A. Marco

A) IMPMC, Sorbonne Université, 4 place Jussieu 75005, Paris, France;
B) Département de Chimie, ENS, 24 rue Lhomond 75005, Paris, France

leon.huet@sorbonne-universite.fr

Glycine has a central role in prebiotic chemistry inquiry as the simplest amino acid. While documented in meteorites, glycine’s presence in the interstellar medium poses a persistent enigma. Nevertheless, the presence of alternative amino acids in meteoritic samples, inexplicable within the confines of the generally admitted Strecker mechanism, presents a compelling challenge.

We engage computational modeling, rooted in quantum mechanics, to navigate the complex chemical landscape of this synthesis. We employed ab initio Molecular Dynamics (AIMD) calculations with enhanced sampling techniques alongside neural network potentials, enhancing simulation scalability and affordability beyond conventional bounds. This refined methodological framework, called MLMD, allows us to identify and explore of an uncharted 'oxy-glycolate path' for glycine synthesis. Building upon precedent investigations, our inquiry converges on two pivotal contributions: the unveiling of an unprecedented glycine synthesis route and the assertion of our new method as a potent instrument in probing chemical synthesis.

Keywords: ab initio molecular dynamic; prebiotic chemistry; enhanced sampling; machine learning

Figure 1. 2D graphics of the metadynamics trajectory that breaks toward glycine. The trajectory is colored with the initial set of intermediates out of the molecules observed during exploration of the chemical space.

Figure 1. 2D graphics of the metadynamics trajectory that breaks toward glycine. The trajectory is colored with the initial set of intermediates out of the molecules observed during exploration of the chemical space.

Keywords: ab initio molecular dynamic; prebiotic chemistry; enhanced sampling; machine learning