Enhancing Thermoelectric Efficiency of Organometallic Molecular Junctions by Quantum Interference

SANTOS ALMEIDA Joseane, A Costuas Karine, A CORNIL Jérôme B

A) Inorganic Theoretical Chemistry (CTI), Institute of Chemical Sciences of Rennes - UMR CNRS 6226, University of Rennes, 263 Av. Général Leclerc, 35700 Rennes, France; B) Chemistry of Novel Materials (CMN), University of Mons, Place du Parc, 20 7000, Mons, Belgium.

Joseane.almeida@univ-rennes.fr

Due to their size where quantum effects dominate the carriers transport, Molecular Junctions (MJ) offers a rich field for both experimental and basic science exploration. Since the proposal of Aviram and Ratner for constructing molecular rectifiers 1, the number of investigations in MJ is growing, as long as the fine-tuning capability of chemical structure and electronic configuration enables the design of different applications such as conducting wire 2. Among their possible functions, MJ can present interesting thermal and thermoelectric properties, that could be used to fabricate energy nano-converters and nano-coolers 3. The presence of metals in molecular systems can promote the frontier orbitals closer to the Fermi level and induce quantum interference, leading to highly conductive molecular wires with increased thermoelectric properties 4. Quantum interference (QI) effects influence the transmission probability of charge carriers across molecular junctions, Fano resonance and anti-resonance being the manifestations of this phenomenon. In this work, by molecular design, we explore QI for electronic transport in linear response regime to increase significantly the Seebeck coefficient.

QuantumATK 5 simulations were performed to tackle this question using non-equilibrium Green functions associated with density function theory (DFT) calculations (GGA rev-PBE/DZP and SZP for Au). The electronic and transport properties of different organometallic systems will be presented, which includes charged and spin polarized molecular junctions. A comparison with experimental results will also be provided.

Figure 1. Thermoelectric ability can be improved by Quantum Interference and external stimulus.

Keywords: charge transport, energy conversion, thermoelectricity, molecular junctions, Fano resonance.